Allostery and Intrinsic Disorder Mediate Transcription Regulation by Conditional Cooperativity

نویسندگان

  • Abel Garcia-Pino
  • Sreeram Balasubramanian
  • Lode Wyns
  • Ehud Gazit
  • Henri De Greve
  • Roy D. Magnuson
  • Daniel Charlier
  • Nico A.J. van Nuland
  • Remy Loris
چکیده

Regulation of the phd/doc toxin-antitoxin operon involves the toxin Doc as co- or derepressor depending on the ratio between Phd and Doc, a phenomenon known as conditional cooperativity. The mechanism underlying this observed behavior is not understood. Here we show that monomeric Doc engages two Phd dimers on two unrelated binding sites. The binding of Doc to the intrinsically disordered C-terminal domain of Phd structures its N-terminal DNA-binding domain, illustrating allosteric coupling between highly disordered and highly unstable domains. This allosteric effect also couples Doc neutralization to the conditional regulation of transcription. In this way, higher levels of Doc tighten repression up to a point where the accumulation of toxin triggers the production of Phd to counteract its action. Our experiments provide the basis for understanding the mechanism of conditional cooperative regulation of transcription typical of toxin-antitoxin modules. This model may be applicable for the regulation of other biological systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Cooperativity of Toxin - Antitoxin Regulation Can Mediate Bistability between Growth and Dormancy

Many toxin-antitoxin operons are regulated by the toxin/antitoxin ratio by mechanisms collectively coined "conditional cooperativity". Toxin and antitoxin form heteromers with different stoichiometric ratios, and the complex with the intermediate ratio works best as a transcription repressor. This allows transcription at low toxin level, strong repression at intermediate toxin level, and then a...

متن کامل

Review: allostery in chaperonins.

Chaperonins mediate protein folding in an ATP-dependent manner. ATP binding and hydrolysis by chaperonins are subject to both homotropic and heterotropic allosteric regulation. In the case of GroEL and CCT, homotropic regulation by ATP is manifested in nested cooperativity, which involves positive intra-ring cooperativity and negative inter-ring cooperativity in ATP binding. Both types of coope...

متن کامل

Cooperative DNA Recognition Modulated by an Interplay between Protein-Protein Interactions and DNA-Mediated Allostery

Highly specific transcriptional regulation depends on the cooperative association of transcription factors into enhanceosomes. Usually, their DNA-binding cooperativity originates from either direct interactions or DNA-mediated allostery. Here, we performed unbiased molecular simulations followed by simulations of protein-DNA unbinding and free energy profiling to study the cooperative DNA recog...

متن کامل

Interplay between allostery and intrinsic disorder in an ensemble.

Allostery is a biological phenomenon of critical importance in metabolic regulation and cell signalling. The fundamental premise of classical models that describe allostery is that structure mediates 'action at a distance'. Recently, this paradigm has been challenged by the enrichment of IDPs (intrinsically disordered proteins) or ID (intrinsically disordered) segments in transcription factors ...

متن کامل

Mechanism of transcription regulation by conditional co - operativity

Much of the knowledge we have about regulation of transcription in prokaryotes comes from two particularly well-studied systems: the Lac repressor-lac operon [1] and the λ-repressor and λ-Cro for the control of the lysogenic/lytic cycles of λ-phage [2]. In both cases, the repressors are well-folded species lacking appreciable structural disorder. Eukaryotic transcription factors on the other ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 142  شماره 

صفحات  -

تاریخ انتشار 2010